8y^2-40=6

Simple and best practice solution for 8y^2-40=6 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 8y^2-40=6 equation:



8y^2-40=6
We move all terms to the left:
8y^2-40-(6)=0
We add all the numbers together, and all the variables
8y^2-46=0
a = 8; b = 0; c = -46;
Δ = b2-4ac
Δ = 02-4·8·(-46)
Δ = 1472
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{1472}=\sqrt{64*23}=\sqrt{64}*\sqrt{23}=8\sqrt{23}$
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{23}}{2*8}=\frac{0-8\sqrt{23}}{16} =-\frac{8\sqrt{23}}{16} =-\frac{\sqrt{23}}{2} $
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{23}}{2*8}=\frac{0+8\sqrt{23}}{16} =\frac{8\sqrt{23}}{16} =\frac{\sqrt{23}}{2} $

See similar equations:

| x+4x-13-2x=10 | | 5x+1=1/125 | | 4x+7=1#9 | | 4x+7=119 | | v-v=6+10 | | 3x+11+x=137 | | -7x(-6x+3)=189 | | -7x(-6x+3)=-188 | | M^3+m^2+2m+8=0 | | 4x+6-7×+9=8 | | L(d)=55+d | | (2q-6)(3)= | | 4t^-9=0 | | 4x-3/5=20 | | 4=10u | | 23=2x+x+5 | | (10x+5/3x-2)-1=7x+7/3x-2 | | 23=-5+4v | | 2y°=90° | | 2x-4x-10=30 | | -82=2x+7x-10 | | 23-3t=7 | | -3=3t-5.5t | | -6=3x=6 | | -5(k-95)=10 | | -2(2+5x)=-54 | | X2+(22-x)2=250 | | 96=8(p+3) | | x+8+7-x=8 | | 31y=-3-15 | | .5x+4=2(x+3) | | 2b2-32=0 |

Equations solver categories